

Classifications

EN ISO 17633-B:2008	: TS317L-FC1	KS D 3612	: YF-317LC
AWS A5.22-15	: E317LT1-1	JIS Z 3323	: TS317L-FC1

Description

- K-317LT is designed for MAG welding of low carbon 19%Cr-13%Ni-3%Mo stainless steels and the principal area of application is process and chemical plant, shipbuilding as well as nuclear plant industries (AISI 316L, 316LN, 317L, 317LN, UNS S31726)
- Wire is a titania type of flux cored wire for all-position welding and it has self-detaching slag, spray-like arc transfer, excellent weldability and increased creep resistance at elevated temperature.
- · It contains higher levels of Mo for increased corrosion-resistance when compared to the K-316LT.
- The weld metal contains optimum ferrite contents in their austenitic structures, Therefore their weldability is excellent with lower crack susceptibility.

Welding positions

Polarity & shielding gas

- CO2: 100% CO2 (15~25l/min)
- DCEP (DC+)

Typical chemi	cal compos	ition of all	-weld metal	(%)				
Shielding gas	С	Si	Mn	Cr	Ni	Мо		FN
CO2	0.03	0.56	1.00	19.60	13.30	3.85		11.0
Typical mecha	anical prope	rties of all	-weld metal					
	Y.S (MPa)	(T.S (MPa)	EI. (%)	اV 20℃-	(J) -40℃	Rema	rks
AWS A5.22 EN ISO 17633-E Example	390	m	in. 520 in. 520 650	min. 20 min. 20 32	55	44	CO	2
Notes on usag	e and weldi	ng conditi	ion	Pack	age			
 Refer to page 304 for more information on usage When heat input is excessive, the impact value tends 			Dia.	(mm)	0.9	1.2	1.6	

 When heat input is excessive, the impact value tends to be reduced. Therefore, perform welding with selecting proper heat input

٨	-	-		_		_	l.	
M	μ	μ	L	U	V	a	15	

Shielding gas	Others
CO ₂	CE, JIS

