Flux Cored Welding Wire



## Classifications

| EN ISO 17633-B:2008 | : TS2553-FC0 |
|---------------------|--------------|
| AWS A5.22-15        | : E2553T0-G  |

Therefore, perform welding with selecting proper

heat input

JIS Z 3323

: TS2553-FC0

## Description

- K-325T is formulated for MAG welding of 25%Cr-9%Ni-3%MoCu duplex stainless steels and the typical application is chemical plant and shipbuilding as well as nuclear plant industries (UNS S32520, UNS S32550, S32750, S32900, JIS 329J4L)
- Wire is a titania type of flux cored wire for flat and horizontal position welding, and provides low spatter
   and fume generation and high efficiency in flat position
- It has better pitting corrosion resistance and stress corrosion cracking resistance compared to the E2209TX-XXX welding consumables type.

| Welding positions | Polarity & shielding gas                                           |
|-------------------|--------------------------------------------------------------------|
|                   | <ul> <li>CO2: 100% CO2 (15~25ℓ/min)</li> <li>DCEP (DC+)</li> </ul> |

| Typical chemic                                                                                                                                                                          | al compos:      | ition of | all-weld meta               | l (%)                    |             |                     |                   |          |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|-----------------------------|--------------------------|-------------|---------------------|-------------------|----------|----|
| Shielding gas                                                                                                                                                                           | С               | Si       | Mn                          | Cr                       | Ni          | Mo                  | ) F               | PREN     | FN |
| CO2                                                                                                                                                                                     | 0.03            | 0.50     | 0.80                        | 25.60                    | 9.00        | 3.6                 |                   | 40.5     | 55 |
| Typical mecha                                                                                                                                                                           | nical prope     | rties of | all-weld meta               | I                        |             |                     |                   |          |    |
|                                                                                                                                                                                         | Y.S<br>(MPa)    |          | T.S<br>(MPa)                | EI.<br>(%)               |             | IV (J)<br>-20℃ -40℃ |                   | Remarks  |    |
| AWS A5.22<br>EN ISO 17633-B<br>Example                                                                                                                                                  | min. 350<br>750 |          | min. 690<br>min. 690<br>860 | min. 20<br>min. 19<br>25 | -           | 42                  | 27                | CO       | 2  |
| Notes on usage and welding condition                                                                                                                                                    |                 |          | Pa                          | ckage                    | )           |                     |                   |          |    |
| <ul> <li>Refer to page 303 for more information on usage</li> <li>When heat input is excessive, base metal will be<br/>bended or distorted due to the bad heat conductivity.</li> </ul> |                 |          | S                           |                          | mm)<br>(kg) | 0.9                 | 1.2<br>5, 12.5, 1 | 1.6<br>5 |    |