Flux Cored Welding Wire

Ferritic Stainless welding wire (Muffler, 13%Cr-Ti)

Classifications

EN ISO 17633-B:2010 : TS 409-M M13 0 AWS A5.22-2012 : E409T0-G

Description

- · K-409TiT is developed to meet the needs of the automotive exhaust fabricators that desired a metal cored wire. It excels in the pulsed GMAW mode and additional applications include heat exchangers and recuperators, power plant reheater tubes etc.
- · It would produce a moderately soft arc and high welding speed.
- K-409TiC provides low spatter, excellent bead appearance and porosity resistance.
- · Higher Ti component improves resistance to porosity, good wetting behaviour when compared to the K-409TiT wire.
- · High deposition efficiency and high speed welding on the thin plate are possible.

Welding positions

Example

Polarity & shielding gas

- Mix: Ar+2% O₂ (15~25ℓ/min)
- DCEP (DC+)

24

Typical chem	nical comp	osition of all	l-weld meta	ıl (%)			
Shielding gas	С	Si	Mn	Р	S	Cr	Ti
Mix	0.02	0.44	0.62	0.011	0.005	11.50	1.00

Typical mechanical properties of all-weld metal Y.S T.S EI. Remarks (MPa) (MPa) (%)min. 450 EN ISO 17633-B min. 15

Notes on usage and welding condition

	•	•		
Dia.(mm)		1.2	Stick-out	
Current	PA/1G	180 ~ 260	/1E 20mama)	
(Amp.)	PC/2G	(22 ~25)	(15 ~20mm)	

480

Раскаде		
Dia. (mm)	1.2 1.32	
Spool (kg)	12.5, 15	
Pailnack (kg)	100 ~ 200	

CO₂

⁵³⁰ After machining, but before testing, the specimen was aged at a temperature 100℃ for up to 48 hours then allowed to cool to room temperature.