

SWX 130

Page: 1/3

Features

- Agglomerated flux
- Aluminate-basic type
- Slightly Si and Mn alloying
- For multi wire applications
- Steels up to API X100

Applications

Longitudinal pipe mills

Flux Main Components

 $AI_2O_3 + MnO$

~35%

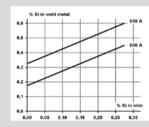
Flux Characteristics

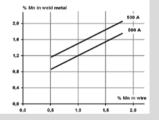
Flux type	Aluminate-Basic
Basicity index	1.5 (Boniszewski)
Alloy transfer	Slightly Si and Mn alloying
Density	1.2 kg/litre
Grain size	0.2-2.0 mm / 10-70 mesh
HDM	< 5 ml/100 g weld metal
Current	DC+/AC
Re-drying unopened bag	Not required
Re-drying opened bag	See storage and handling recommendations

 $SiO_2 + TiO_2$

~20%

CaF₂


~15%


CaO + MgO

~25%

Metallurgical Behaviour

The diagrams show the typical weld metal analysis in relation to wire analysis for silicon and manganese.

Single wire, ø 4.0 mm, DC+, 30 V, 60 cm/min

Flux/Wire - Combina	tion	Classifications		Mechanica	al Pro	perti	ies - 1	ypica	l Valu	es	
With wire		EN ISO	AWS	Re/Rp0.2	Rm	Α	CVN				
				MPa	Мра	%	J				
							0°C	-20°C	-30°C -	40°C	-50°C
SDX S2	AW	14171-A: S 38 4 AB S2		430	520	27	110	75		60	
SDX S2Si-EM12K	AW	14171-A: S 38 4 AB S2Si	A5.17: F7A4-EM12K	430	520	27	100	70		50	
SDX S3Si-EH12K	AW	14171-A: S 46 6 AB S3Si	A5.17: F7A6-EH12K	490	550	29					
SDX S2Mo-EA2	AW	14171-A: S 46 2 AB S2Mo	A5.23: F7A4-EA2-A4	520	590	24	100	70		40	
	SR^1		A5.23: F7P4-EA2-A4								
SDX S3Mo-EA4	AW	14171-A: S 50 2 AB S3Mo		580	670	23		55	40		
SubCOR EM12K-S	AW		A5.17: F7A6-EC1								
SubCOR EM13K-S	AW		A5.17: F7A6-EC1								
	SR^1		A5.17: F7P6-EC1								
SubCOR EM13K-S MOD	AW		A5.17: F7A6-EC1								
	SR ¹		A5.17: F7P8-EC1								
Mechanical properties of	two-i	run pipe joint (high dilution)									
SDX S2Mo-EA2	TR			480	550	23		100		80	50
SDX S3Mo-EA4	TR			510	590	20		70			
SDX S3TiB	TR			560	700	20				45	
SDX S3MoTiB	TR			630	700	25		200		180	120
SubCOR SL 735-1W-5W*	TR			480	600	24		60		50	

Mechanical properties of pipe welds in the two run technique depend on the chemical composition of the base material.

AW: as welded, all weld metal. SR: stress relieved, all weld metal. TR: two-run. SR¹: PWHT 620°C (1150°F)/1h.

Metric values are typical of EN ISO testing and imperial values are typical of AWS testing.

*Depends on the type of solid wire used.

EN ISO 14174: S A AB 1 67 AC H5

Product Data Sheet

Type no: 1<u>30</u>

Benefits

- Low and wide bead profile
- Excellent slag detachability
- Very high deposition rates
- Supplied in moisture proof packaging

Product Data Sheet

SWX 130

EN ISO 14174: S A AB 1 67 AC H5

Page: 2/3							I	ype no:	1	30
Flux/Wire - Combina	Mechanical Properties - Typical Values									
With wire		EN ISO	AWS	YS ksi	TS ksi	E %	CVN ft-lbf			
001/00							0°F -40°F	-60°F -	80°F-	·100°F
SDX S2	AW	14171-A: S 38 4 AB S2								
SDX S2Si-EM12K	AW	14171-A: S 38 4 AB S2Si	A5.17: F7A4-EM12K	69	82	27	23			
SDX S3Si-EH12K	AW	14171-A: S 46 6 AB S3Si	A5.17: F7A6-EH12K	81	91	27			46	
SDX S2Mo-EA2	AW	14171-A: S 46 2 AB S2Mo	A5.23: F7A4-EA2-A4	80	90	27	39			
	SR^1		A5.23: F7P4-EA2-A4	76	88	28	32			
SDX S3Mo-EA4	AW	14171-A: S 50 2 AB S3Mo								
SubCOR EM12K-S	AW		A5.17: F7A6-EC1	60	71	29		84		
SubCOR EM13K-S	AW		A5.17: F7A6-EC1	65	77	31		70	53	
	SR^1		A5.17: F7P6-EC1	58	72	33			84	69
SubCOR EM13K-S MOD	AW		A5.17: F7A6-EC1	77	87	27			50	
	SR^1		A5.17: F7P8-EC1	68	83	29	102		47	

Mechanical properties of pipe welds in the two run technique depend on the chemical composition of the base material. AW: as welded, all weld metal. SR: stress relieved, all weld metal. TR: two-run. SR¹: PWHT 1150°F (620°C)/1h. Metric values are typical of EN ISO testing and imperial values are typical of AWS testing.

Chemical Composition	on All We	ld Meta	al - Typi	cal Valu	es	
With wire	%C	%Si	%Mn	%Mo	%Ti	%B
SDX S2	0.06	0.2	1.3			
SDX S2Si-EM12K	0.06	0.3	1.3			
SDX S3Si-EH12K	0.08	0.3	1.6			
SDX S2Mo-EA2	0.05	0.4	1.4	0.5		
SDX S3Mo-EA4	0.08	0.4	1.6	0.5		
SubCOR EM12K-S	0.05	0.2	1.2			
SubCOR EM13K-S	0.06	0.4	1.2			
SubCOR EM13K-S MOD	0.06	0.4	1.1			
Weld metal analyses of tw	vo-run pipe) joint (hi	gh dilutio	on)		
SDX S3TiB	0.06	0.5	1.6		0.024	0.0024
SDX S3MoTiB	0.06	0.5	1.4	0.3	0.022	0.0024
SubCOR SL 735-1W-5W	Depends	on the ty	pe of soli	d wire us	ed.	

Standard Packages			
Description	Item number	No of bags/pallet	Net weight/pallet
25 kg (55 lbs) Aluminium/PE Bag EAE	130022500H	42	1050 kg (2310 lbs)
1000 kg (2200 lbs) Double Bag	130071T00H	1	1000 kg (2200 lbs)

Product Data Sheet

SWX 130 EN ISO 14174: S A AB 1 67 AC H5 Page: 3/3 Type no: 130 Approvals With wire ABS BV DNV GL LR CWB DB TÜV CE SDX S2Mo-EA2 V Immetriant provide provide provide promotion V V V V

Limitations (diameter, position, etc.) may exist. Please refer to product approval certificates for more information.

Storage, recycling and re-drying

HOBART welding fluxes from undamaged moisture proof packaging can be used without costly re-drying. The flux recycling system must be free from moisture and oil. Slag and millscale must be removed from the recycled flux. At least one part of new flux to three parts of recycled flux must be added. From open packaging and if the flux has been exposed to moist conditions, re-drying is recommended. Agglomerated fluxes should be re-dried at a temperature of 300-350 °C (570-660 °F) for a minimum of 2 hours. Re-dried flux must be stored at 150±25 °C (300±45 °F) before use. Re-drying should be made maximum three times.

Maintaining a proper welding procedure - including pre-heat and interpass temperatures - may be critical depending on the type and thickness of steel being welded.

IECHNICAL QUESTIONS r For technical support of Hobart Filler interais products please visit *www.nobartprotners.com/wnere-to-buy* to find your closest Hobart representative or send an e-mail to *subarc@itw-welding.com* for further assistance.

DISCLAIMER:

The information contained or otherwise referenced herein is for reference purposes only and is presented only as "typical." Typical data are those obtained when welding and testing are performed in accordance with applicable AWS and/or EN ISO specification(s). Other tests and procedures may produce difference results and typical data should not be assumed to yield similar results in a particular application or weldment. No data is to be constructed as a recommendation for any welding condition or technique not controlled by ITW Welding. ITW Welding does not assume responsibility for any results obtained by persons over whose methods it has no control. It is the user's responsibility to determine the suitability of any products or methods mentioned herein for a particular purpose. In light of the foregoing, ITW Welding specifically disclaims any liability incurred from reliance on such information, and disclaims all guarantees and warranties, express or implied, including warranties of merchantability and fitness for a particular purpose, and further disclaims any liability for consequential or incidental damages of any kind, including lost profits.

CAUTION:

Consumers should be thoroughly familiar with the safety precautions on the warning label posted in each shipment and in the American National Standard Z49.1, "Safety in Welding and Cutting," published by the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166-6672 (can also be downloaded online at www.aws.org); OSHA Safety and Health Standards 29 CFR 1910 is available from the U.S. Department of Labor, Washington, D.C. 20210.

Safety Data Sheets on any Hobart Brothers Company product may be obtained from Hobart Customer Service or at www.hobartbrothers.com.

Because Hobart Brothers Company is constantly improving products, Hobart reserves the right to change design and/or specifications without notice.

SubCOR is a trademark of Hobart Brothers Company, Troy Ohio.

Hobart is a registered trademark of Hobart Brothers Company, Troy, Ohio.

Specification: PDS130 // Type Number: 130 // Revision: 4 // Replaces: 3 // Approved By: L.Andersson, P.Jeirud Prepared By: I.Oziewicz // Reason For Issue: Format Standardization. Approvals added.