

Product Data Sheet

NX 160

EN ISO 14174: S A FB 1 55 AC H5

Features	Benefits
reatures	Deficition
Agglomerated flux	High impact toughness
Fluoride-basic type	Excellent slag detachability also in narrow gap applications
Non alloying	High purity weld metal
 For single and multi wire applications 	Supplied in moisture proof packaging
High purity flux for X-factor requirements	
 For creep resistant steels, incl step cooling applications 	

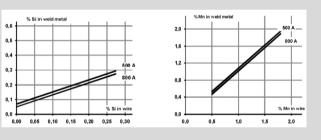
Applications

~20%

~35%

· Pressure vessel fabrication

· For high strength steels


Nuclear applications

- High strength applications
- · Offshore construction

Flux Characteristics		Metallurgical Behaviour	
Flux type	Fluoride-Basic	The diagrams show the typical weld me	tal analysis in relation to wire
Basicity index	2.7 (Boniszewski)	analysis for silicon and manganese.	
Alloy transfer	None		
Density	~1.1 kg/litre	% Si in weld metal	% Mn in weld metal
Grain size	0.2-2.0 mm / 10-70 mesh	0,6	2,0
HDM	< 5 ml/100 g weld metal	0,5	1,6
Current	DC+/AC	0,4	1.2
Re-drying unopened bag	Not required	0,3	"
Re-drying opened bag	See storage and handling recommendations	0,2 800 A	8,0
		0,1	0,4
Flux Main Compone	nts	0,0 % Si in wire	0,0 % Mn
Al ₂ O ₃ + MnO CaO	+ Mg0 SiO_2 + TiO_2 CaF_2	0,00 0,05 0,10 0,15 0,20 0,25 0,30	0,0 0,5 1,0 1,5

~25%

~15%

Single wire, ø 4.0 mm, DC+, 30 V, 60 cm/min

Flux/Wire - Combination Classifications						al Pro	pert	ies - 1	Гуріс	al Va	lues	
With wire		EN ISO	AWS	Re/Rp 0.2	Rm	A	CVN					
				Мра	Мра	%	J					
							0°C	-20°C	-30°C	-40°C	-50°C	-60°C
SDX S3-EH10K	AW	14171-A: S 42 5 FB S3	A5.17: F7A6-EH10K	450	540	24				100	70	
	SR^1	14171-A: S 42 5 FB S3	A5.17: P6A6-EH10K	400	510	24				110	80	
SDX S3Si-EH12K	SR ¹	14171-A: S 38 6 FB S3Si	A5.17: F7P8-EH12K	410	500	28				110		70
SDX CrMo1-EB2R	SR^2	24598-A: S S CrMo1 FB	A5.23: F8P2-EB2R-B2R	480	590	22		110	90			
	SR^3			480	580	22		110	90			
SDX CrMo2-EB3R *)	SR^2	24598-A: S S CrMo2 FB	A5.23: F8P2-EB3R-B3R	530	630	22		100	90			
	SR^3			500	590	22		100	90			
SubCOR SL P91	SR^4	24598-A: S T CrMo91 FB		560	670	20	50					
SDX S3Ni2.5CrMo	AW	26304-A: S 79 6 FB S3Ni2.5CrMo		820	880	18				90		60
SubCOR 120-S	AW		A5.23: F11A6-ECM4-M4	770	830	19				80		
SubCOR SL 742	AW	26304-A: S 69 6 FB T3 Ni2.5CrMo	A5.23: F11A8-ECF5-F5	730	830	17				120		90

AW: as welded, all weld metal. SR: stress relieved, all weld metal. SR¹: PWHT 620°C (1150°F)/1h. SR²: PWHT 690°C (1275°F)/1h. SR³: 665°C (1230°F)/20 SR4: PWHT 760°C (1400°F)/3h.

Metric values are typical of EN ISO testing and imperial values are typical of AWS testing.

^{*)} Step cooling data available.

Product Data Sheet

SWX 160

EN ISO 14174: S A FB 1 55 AC H5

Page: 2/3 Type no: 160

Flux/Wire - Combir	Mechanic	al Pro	pert	ies -	Туріс	al Va	lues				
With wire		EN ISO	AWS	YS	TS	Е	CVN				
				ksi	ksi	%	ft-lbf				
							0°F	-20°F	-40°F	-60°F	-80°F
SDX S3-EH10K	AW	14171-A: S 42 5 FB S3	A5.17: F7A6-EH10K	65	77	23			73	51	
	SR ¹	14171-A: S 42 5 FB S3	A5.17: P6A6-EH10K	58	74	23			80	58	
SDX S3Si-EH12K	SR ¹	14171-A: S 38 6 FB S3Si	A5.17: F7P8-EH12K	60	75	28			80		50
SDX CrMo1-EB2R	SR ²	24598-A: S S CrMo1 FB	A5.23: F8P2-EB2R-B2R	70	85	22	80	65			
	SR ³			70	85	22	80	65			
SDX CrMo2-EB3R *)	SR ²	24598-A: S S CrMo2 FB	A5.23: F8P2-EB3R-B3R	80	90	22	75	65			
	SR ³			75	85	22	75	65			
SubCOR SL P91	SR^4	24598-A: S T CrMo91 FB		120	130	18			65		45
SDX S3Ni2.5CrMo	AW	26304-A: S 79 6 FB S3Ni2.5CrMo		110	120	19			60		
SubCOR 120-S	AW		A5.23: F11A6-ECM4-M4	105	120	17			90		65
SubCOR SL 742	AW	26304-A: S 69 6 FB T3 Ni2.5CrMc	A5.23: F11A8-ECF5-F5								
SDX S2Ni1Cu	AW	14171-A: S 46 3 AB S2Ni1Cu									

AW: as welded, all weld metal. SR: stress relieved, all weld metal. SR 1 : PWHT 1150°F (620°C)/1h. SR 2 : PWHT 1275°F (690°C)/1h. SR 3 : 1230°F (665°C)/20 SR 4 : PWHT 1400°F (760°C)/3h.

Metric values are typical of EN ISO testing and imperial values are typical of AWS testing.

Chemical Composit	ion All W	eld Me	tal - Tvi	nical Va	lues					
With wire	%C	%Si	%Mn	%P	%S	%Cr	%Ni	%Mo	%V	X ppm
SDX S3-EH10K	0.08	0.3	1.4	0.012	0.008					
SDX S3Si-EH12K	0.09	0.4	1.5	0.004	0.002					
SDX CrMo1-EB2R	0.09	0.3	0.9	0.006	0.003	1.2		0.4		7
SDX CrMo2-EB3R	0.09	0.3	0.7	0.007	0.003	2.3		1.0		8
SubCOR SL P91	0.10	0.4	1.0	0.018	0.011	8.4	0.3	0.9	0.1	
SDX S3Ni2.5CrMo	0.08	0.4	1.5	0.010	0.003	0.5	2.3	0.5		
SubCOR 120-S	0.07	0.4	1.6	0.009	0.005	0.3	2.4	0.5		
SubCOR SL 742	0.08	0.4	1.7	0.012	0.007	0.4	2.0	0.4		

Standard Packages				
Description	Item number	No of bags/pallet	Net weight/pallet	
22.7 kg (50 lbs) Aluminium/PE Bag EAE	160022300H	42	953 kg (2100 lbs)	

^{*)} Step cooling data available.

Product Data Sheet

SWX 160

EN ISO 14174: S A FB 1 55 AC H5

Page: 3/3 Type no: 160

Storage, recycling and re-drying

HOBART welding fluxes from undamaged moisture proof packaging can be used without costly re-drying. The flux recycling system must be free from moisture and oil. Slag and millscale must be removed from the recycled flux. At least one part of new flux to three parts of recycled flux must be added. From open packaging and if the flux has been exposed to moist conditions, re-drying is recommended. Agglomerated fluxes should be re-dried at a temperature of 300-350 °C (570-660 °F) for a minimum of 2 hours. Re-dried flux must be stored at 150±25 °C (300±45 °F) before use. Re-drying should be made maximum three times.

Maintaining a proper welding procedure - including pre-heat and interpass temperatures - may be critical depending on the type and thickness of steel being welded.

TECHNICAL QUESTIONS? For technical support of Hobart Filler Metals products please visit **www.hobartbrothers.com/where-to-buy** to find your closest Hobart representative or send an e-mail to **subarc@itw-welding.com** for further assistance.

DISCLAIMER:

The information contained or otherwise referenced herein is for reference purposes only and is presented only as "typical." Typical data are those obtained when welding and testing are performed in accordance with applicable AWS and/or EN ISO specification(s). Other tests and procedures may produce difference results and typical data should not be assumed to yield similar results in a particular application or weldment. No data is to be constructed as a recommendation for any welding condition or technique not controlled by ITW Welding. ITW Welding does not assume responsibility for any results obtained by persons over whose methods it has no control. It is the user's responsibility to determine the suitability of any products or methods mentioned herein for a particular purpose. In light of the foregoing, ITW Welding specifically disclaims any liability incurred from reliance on such information, and disclaims all guarantees and warranties, express or implied, including warranties of merchantability and fitness for a particular purpose, and further disclaims any liability for consequential or incidental damages of any kind, including lost profits.

CAUTION:

Consumers should be thoroughly familiar with the safety precautions on the warning label posted in each shipment and in the American National Standard Z49.1, "Safety in Welding and Cutting," published by the American Welding Society, 8669 NW 36 St, # 130, Miami, FL 33166-6672 (can also be downloaded online at www.aws.org); OSHA Safety and Health Standards 29 CFR 1910 is available from the U.S. Department of Labor, Washington, D.C. 20210.

Safety Data Sheets on any Hobart Brothers Company product may be obtained from Hobart Customer Service or at www.hobartbrothers.com.

Because Hobart Brothers Company is constantly improving products, Hobart reserves the right to change design and/or specifications without notice.

SubCOR is a trademark of Hobart Brothers Company, Troy Ohio.

 $\label{thm:company} \mbox{Hobart is a registered trademark of Hobart Brothers Company, Troy, Ohio.} \\$

 $\textbf{Specification:} \ \ \textbf{PDS160 // Type Number:} \ \ \textbf{160 // Revision:} \ \ \textbf{2 // Replaces:} \ \ \textbf{1 // Approved By:} \ \ \textbf{A.} \ \ \textbf{Holzner}, \ \textbf{G.} \ \ \textbf{Hiereth,} \ \ \textbf{P.Jeirud}$

 $\textbf{Prepared By: } \textbf{I.Oziewicz // Reason For Issue:} \ \textbf{Flux and wire combinations added}$